On Some Hard Problems on Matroid Spikes

نویسنده

  • Petr Hliněný
چکیده

Spikes form an interesting class of 3-connected matroids of branch-width 3. We show that some computational problems are hard on spikes with given matrix representations over infinite fields. Namely, the question whether a given spike is the free spike is co-NP -hard (though the property itself is definable in monadic second-order logic); and the task to compute the Tutte polynomial of a spike is #P -hard (even though that can be solved efficiently on all matroids of bounded branch-width which are represented over a finite field).

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Complexity of Some Enumeration Problems for Matroids

Let M be a matroid defined by an independence oracle on ground set S, and let A ⊆ S. We present an incremental polynomial-time algorithm for enumerating all minimal (maximal) subsets of S which span (do not span) A. Special cases of these problems include the generation of bases, circuits, hyperplanes, flats of given rank, circuits through a given element, generalized Steiner trees and multiway...

متن کامل

Combinatorial and Geometric Approaches to Counting Problems on Linear Matroids, Graphic Arrangements, and Partial Orders

For typical #P-hard problems on graphs, we have recently proposed an approach to solve those problems of moderate size rigorously by means of the binary decision diagram, BDD [12, 13]. This paper extends this approach to counting problems on linear matroids, graphic arrangements and partial orders, most of which are already known to be #P-hard, with using geometric properties. E cient algorithm...

متن کامل

The Complexity of Maximum Matroid-Greedoid Intersection and Weighted Greedoid Maximization

The maximum intersection problem for a matroid and a greedoid, given by polynomial-time oracles, is shown NP -hard by expressing the satis ability of boolean formulas in 3-conjunctive normal form as such an intersection. The corresponding approximation problems are shown NP -hard for certain approximation performance bounds. Moreover, some natural parameterized variants of the problem are shown...

متن کامل

Random Sampling and Greedy Sparsiication for Matroid Optimization Problems

Random sampling is a powerful tool for gathering information about a group by considering only a small part of it. We discuss some broadly applicable paradigms for using random sampling in combinatorial optimization, and demonstrate the eeectiveness of these paradigms for two optimization problems on matroids: nding an optimum matroid basis and packing disjoint matroid bases. Applications of th...

متن کامل

Random sampling and greedy sparsification for matroid optimization problems

Random sampling is a powerful tool for gathering information about a group by considering only a small part of it. We discuss some broadly applicable paradigms for using random sampling in combinatorial optimization, and demonstrate the eeectiveness of these paradigms for two optimization problems on matroids: nding an optimum matroid basis and packing disjoint matroid bases. Applications of th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005